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Abstract: Recent Einstein-Podolsky-Rosen-Bohm experi-
ments [M. Giustina et al. Phys. Rev. Lett. 115, 250401 (2015);
L. K. Shalm et al. Phys. Rev. Lett. 115, 250402 (2015)]
that claim to be loophole free are scrutinized. The com-
bination of a digital computer and discrete-event simula-
tion is used to construct a minimal but faithful model of
the most perfected realization of these laboratory experi-
ments. In contrast to prior simulations, all photon selec-
tions are strictly made, as they are in the actual experi-
ments, at the local station and no other “post-selection” is
involved. The simulation results demonstrate that a man-
ifestly non-quantum model that identi�es photons in the
same local manner as in these experiments can produce
correlations that are in excellent agreement with those of
the quantum theoretical description of the corresponding
thought experiment, in con�ict with Bell’s theorem which
states that this is impossible. The failure of Bell’s theo-
rem is possible because of our recognition of the photon
identi�cation loophole. Such identi�cationmeasurement-
procedures are necessarily included in all actual experi-
ments but are not included in the theory of Bell and his
followers.
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1 Introduction
The debate between Einstein and Bohr, about the founda-
tions of quantum mechanics, resulted in a Gedanken- ex-
periment suggestedbyEinstein-Podolsky-Rosen (EPR) [28]
that was later modi�ed by Bohm (EPRB) [7]. The schemat-
ics of this experiment is shown in Figure 1 and involves two
wings and twomeasurement stations. EPR used the quan-
tum mechanical predictions for possible outcomes of this
experiment to show that quantum mechanics was incom-
plete.

Many years later, John S. Bell derived an inequality for
the possible outcomes of EPRB experiments that he per-
ceived to be based only on the physics of Einstein’s rel-
ativity [6]. Bell’s inequality, as it was henceforth called,
seemed to contradict the quantum predictions for EPRB
experimental outcomes altogether [6].

Experimental investigations, following Bell’s theoreti-
cal suggestions, provided a large number of data that were
violating Bell-type inequalities and climaxed in the suspi-
cion of a failure of Einstein’s physics and his basic under-
standing of space and time [3, 12, 15, 57, 89].

Central to these discussions and questions are the cor-
relations of space-like separated detection events, some of
which are interpreted as the observation of a pair of enti-
ties such as photons. The problem of classifying events as
the observation of a “photon” or of something else is not
as simple as in the case of say, billiard balls. The particle
identi�cation problem is, in fact, key for the understand-
ing of the epistemology of correlations between events.

What do we know about such correlations of space-
like separated events?Popular presentations ofBell’swork
typically involve two isolated agents (Alice, Bob) at sepa-
ratedmeasurement stations (Tenerife, La Palma), who just
collect data of local measurements. But how does Alice
know that she is dealing with a particle of a pair of which
Bob investigates the other particle? She is supposed to be
totally isolated from Bob’s wing of the experiment in order
to ful�ll Einstein’s separation and locality principle! The
answer is that neither Alice nor Bob know they deal with
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Figure 1: Diagram of the EPRB thought experiment. The source S, activated at times labeled by n = 1, 2, . . . , N, sends a photon to the
observation station R1 and another photon to the observation station R2. Depending on the settings of these observation stations repre-
sented by unit vectors a1 and a2, the signal going to the left (right) triggers the counters D+,1 or D−,1 (D+,2 or D−,2).

correlated pairs if their stations are completely separated
from each other and have no space-time knowledge of the
other wing ever.

In his papers on the EPRB experiment, Bell did not ad-
dress this fundamental question but considered correlated
pairs as given, without any trace of the tools of measure-
ment andof space-time concepts that are bothnecessary to
accomplish the identi�cation of events. He then claimed to
have discovered a con�ict between his theoretical descrip-
tion and the quantum theoretical description of the EPRB
thought experiment [6]. As a consequence of this discov-
ery, much research was devoted to

(i) the actual derivation of Bell-type inequalities from
Einstein’s framework of physics (particularly his sep-
aration principle that derives from the speed of light
in vacuum (c being the limit of all speeds) and Kol-
mogorov’s probability theory [59],

(ii) designing and performing laboratory experiments
that provide data that are in con�ict with the Bell-
type inequalities,

(iii) constructingmathematical-physicalmodels, at times
supported by computer simulations that entirely
comply with Einstein’s and Einstein’s separation
principle, that do not rely on concepts of quantum
theory, and are nevertheless in con�ictwith theBell’s
theorem.

Bell’s theory, and the theories of all his followers, includ-
ingWigner, do not deal with the identi�cation of the corre-
lated particles and assume that they are known automat-
ically, so to speak per �at. But the knowledge of pairing
requires additional data or additional channels of infor-
mation. These additional datamaybemeasurement times,
certain thresholds for detection and many other elements

of the physical reality of the experiments in both wings. It
is important to note that these data must involve measure-
ments in both stations and are necessarily in�uencing the
possible knowledge of the correlations of the single mea-
surements in these stations. In the case of atomic or sub-
atomic measurements the measurement equipment does
not only in�uence the single outcomes as Bohr has taught
us, but correlated measurement equipment (such as syn-
chronized clocks or instruments that determine thresh-
olds) also in�uence the knowledge of correlations of these
single outcomes. It is this extension of the Copenhagen
view that leads to a loophole in Bell’s Theorem, the pho-
ton identi�cation loophole. The violations of Bell-type in-
equalities described in this paper are based on this loop-
hole.

Bell and followers envisage that the correlations may
bemeasured in the laboratory in complete separation and,
therefore, physicalmodels of theBell opponentsmust only
use the measurements of two completely separated wings
operated by Alice and Bob who know nothing of each
other. As just explained, correlations of spatially separated
events can only be conceived by involving the human-
invented space-time system in order to demonstrate the
pairing, the knowledge thatmeasurements of particles be-
long together. Therefore, correlations can only be deter-
mined in a consistent way under the umbrella of a given
space-time system that encompasses the two ormoremea-
surement stations. This space-time system that all experi-
menters subscribe to enables us to ban spooky in�uences
out of science, particularly for the EPR experiments that
Einstein constructed for the purpose to show this fact.

We maintain that it is highly non-trivial to identify
(correlated) photons by experimental methods and that
this identi�cation involves, at least in some way, a space-
time system, a system developed by the human mind and
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agreed upon by all experimenters and evaluators of the
Bell-type experiments. In fact, the identi�cation of particle
pairs requires certain knowledge of the space-time prop-
erties of all the experimental equipment involved. This
knowledge must necessarily extend to measurement sta-
tions far from each other and is, therefore, “non-local”. Of
course, this non-local knowledge does not imply that there
are non-local physical in�uences on the data measured in
the two wings. In EPRB experiments [34, 38, 85, 89], great
care is taken to rule out the possibility that the observed
correlations are due to physical in�uences that travel with
velocities not exceeding the speed of light in vacuum. But
without that non-local knowledge, only spooky in�uences
are left as a possibility for connecting events in the two ex-
perimental wings. A space-time knowledge of all involved
equipment is nevertheless required to apply the scienti�c
method.

2 Aim and structure of the paper
As explained above, it is essential that the identi�cation of
photons is included into anymeaningful theoreticalmodel
of an EPRB experiment because otherwise, the model is
too simple to describe this experiment. Failing to do so,
only spooky in�uences can explain the observed pair cor-
relations. Speci�cally, omitting the inclusionof datawhich
select the photons and/or pairs opens an Einstein-local
loophole, which we call henceforth the photon identi�ca-
tion loophole. By design, Bell-type models for the recent
experiments that claim to be loophole free [34, 85] su�er
from this loophole.

The main aim of this paper is to show that by exploit-
ing this loophole, or formulated more positively, by con-
structing a model that captures the essence of these re-
cent laboratory experiments [34, 85], a manifestly non-
quantum computer simulation of an Einstein-local model
that employs the same local photon identi�cation method
in eachwingof theEPRBexperiments as in recent EPRBex-
periments [34, 85], yields the photon pair correlation of a
pair of photons in the singlet state (of their polarizations),
in blatant contradiction with Bell’s theorem.

The paper is structured as follows. Section 3 argues
that a simulation on a digital computer is a perfect lab-
oratory experiment with a physically existing device and
can therefore be used as a metaphor for other laboratory
experiments. The material in this section forms the con-
ceptual basis for developing computer simulation models
of the recent EPRB experiments [34, 85].

Section 4 discusses the relevance of counterfactual
de�niteness (CFD) in relation to the derivation of Bell-type
inequalities and hence also for computer simulation mod-
els that yield data that are in con�ict with these inequali-
ties. In Section 5, we introduce a CFD-compliant computer
simulationmodel of the recent EPRB experiments [34, 85].
We discuss the correspondence of the essential elements
of the latter with those of the simulationmodel but refrain
from plunging into the details of the algorithm itself.

Section 6 gives a simple, rigorous proof that oper-
ationally but not conceptually, photon identi�cation in
each wing by a local voltage threshold [34], photon identi-
�cation in each wing by a local time window, and photon
identi�cation by time-coincidence counting are all math-
ematically equivalent. In Section 7, we discuss the con-
sequences of excluding from a model, at least one fea-
ture that is essential for an experiment to yield useful
data. We argue that Bell-type models, which are believed
to be relevant for the description of recent EPRB experi-
ments [34, 85], su�er from the photon identi�cation loop-
hole in a dramatic manner.

Section 8 is devoted to a simple proof that the sim-
ulation model introduced in Section 5 is CFD-compliant.
In Section 9, we give a simple derivation of the Bell [5],
Clauser-Horn-Shimony-Holt (CHSH) [14], Eberhard [27],
and Clauser-Horn (CH) [13] inequalities for real data, not
for the imagined data produced by probabilistic models
(which are discussed in the Appendix) and in Section 10
we present a more general inequality that accounts for
the local photon identi�cation procedure, employed in the
laboratory experiments.

In section 11, we specify the computer simulation al-
gorithm and the simulation procedure in full detail. A rep-
resentative collection of simulation results is presented in
section 12. The main conclusion from these simulations is
that a non-quantum model that employs the same pho-
ton identi�cationmethod in eachwing of the EPRB experi-
ments as the one used in recent EPRB experiments [34, 85],
reproduces the results of quantum theory of the EPRB
thought experiment.

In section 13, we argue that all EPRB laboratory ex-
periments with photons can be viewed as a tool to char-
acterize the response of the observation stations, leading
to the conclusion that this response, in particular the lo-
cal photon identi�cation rate, depends on the settings of
these stations, consistent with the assumptions made in
constructing the simulation model and debunking the hy-
pothesis that the observed pair correlations can be ex-
plained by non-local in�uences only. The paper ends with
section 14 which contains our conclusions.

Unauthenticated
Download Date | 11/25/17 6:30 AM



716 | Hans De Raedt, Kristel Michielsen, and Karl Hess

Figure 2: Diagram indicating the direction of the modeling process adopted in this paper. An algorithm executing on a digital computer is
an instance of an experiment on a physically existing device, a metaphor for a perfect laboratory experiment in which there are no unknown
influences.

3 Metaphor for a perfect laboratory
experiment

An important, characteristic feature of digital computers
is that their logical operation does not depend on the tech-
nology that is used to construct the machine. These days,
the �rst thing that comes to mind when talking about dig-
ital computers are the electronic machines based on semi-
conductor technology but it is a fact that, although not
cost-e�ective nor particularly useful in practice, digital
computers can also be built from mechanical parts, e.g.
LegoTM elements.

In former times, one could read o� the state of the
computer’s internal registers froma LEDdisplay. Although
not practical at all, in principle one could use a huge LED
display to show the internal state of the whole computer.
This is only to say that there is a one-to-one mapping from
the state of the computer to sense impressions (e.g. light
on/o�). Therefore, the metaphor also o�ers unique possi-
bilities to confront man-made concepts and theories with
actual facts, i.e. real perfect experiments, because it guar-
antees that we have a well-de�ned, precise representation
of the concepts and algorithms (both in terms of bits) in-
volved that directly translate into sense impressions.

In the analysis of laboratory EPRB experiments, it is
essential that all the important degrees of freedom that af-
fect the data analysis are identi�ed and included, other-
wise the conclusions drawn from an incomplete analysis
may bewrong [36]. Computer simulation puts us in the po-
sition to perform experiments under the samemathemati-
cal conditions for which e.g. Bell-type inequalities can be
derived, simply because we can carry out real, perfect ex-
periments that are void of anyunknownelements thatmay
a�ect the results and analysis.

A digital computer is a physical (electronic or me-
chanical) device that changes its physical state (by �ip-
ping bits) according to well-de�ned rules (the algorithm).
Therefore, assuming that the machine is operating �aw-
less for the time period of interest (a very reasonable as-
sumption these days), executing an algorithm on a digi-
tal computer is a physics experiment in which there are no
unknown elements of physical reality that might a�ect the
outcome. In this sense, the “digital computer + algorithm”
can be viewed as ametaphor for a perfected laboratory ex-
periment, a discrete-event simulation that represents the
so called “loophole-free” EPRB experiments [34, 85].

Starting with Bell’s work [5], most theoretical work
on the subject matter is based on probability theory. This
mathematical framework contains conceptual elements
(probability measures and in�nitesimals) that are outside
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the domain of our sensory experiences and have no coun-
terpart in our physical world. Therefore, to avoid pitfalls,
we �rst devise an algorithm that simulates the perfect
laboratory experiment and then construct a probabilistic
model of this algorithm. A graphical representation of the
modeling philosophy that we adopt in this paper is shown
in Figure 2. Note that our approach starts from the experi-
ments and results in a theory, which we believe is the only
direction one should go. In contrast, Bell’s approach was
the design of an experiment starting from his theoretical
point of view.

4 Counterfactual de�niteness
Counterfactual reasoning plays a signi�cant role in the lit-
erature related to Bell’s work and is seen by many a con-
ditio sine qua non to derive Bell-type inequalities [18, 40,
56, 67]. However, as explained below, the actual EPRB ex-
periments donot permit anyproof of CFDcompliance. This
fact demonstrates an unexpected conceptual advantage of
computer experiments. We can turn on and o� CFD com-
pliancy at will in our algorithm and simulate the conse-
quences and thus distinguish the precise conditions that
may or may not lead to violations of Bell-type inequalities.
This is our reason to dedicate signi�cant sections of this
paper to counterfactual de�niteness (CFD) as de�ned be-
low, and includeCFD-compliantmodels at the side ofmore
faithful models of the actual EPRB experiments.

So called counterfactual “measurements” yield values
that have been derived by means other than direct obser-
vation or actual measurement, such as by calculation on
the basis of a well-substantiated theory. If one knows an
equation that permits deriving reliably, output values from
a list of inputs to the system under investigation, then one
has “counterfactual de�niteness” (CFD) in the knowledge
of that system [79].

The word “counterfactual” is a misnomer [79] but is
well established. It is therefore helpful to have a clear-
cut operational de�nition of what is meant with CFD. In
essence, CFDmeans that the output state of a system, rep-
resented by a vector of values y, can be calculated using
an explicit formula, e.g. y = f (x) where f (.) is a known
vector-valued function of its argument x. If x denotes a
vector of values, the elements of this vector must be inde-
pendent variables for the mathematical model to be CFD-
compliant [23, 40].

In laboratory EPRB experiments, every trial takes
place under di�erent conditions, di�erent settings etc.
which may or may not a�ect the outcome of a single trial.

Mathematically, we may express this dependence as y =
F(x, C, U)where now F(.) is a vector-valued function of its
arguments and C and U represent the known condition-
s/settings and unknown in�uences, respectively. In gen-
eral, there is no reason why U should be a constant from
trial to trial. In other words, F(.) is unknown. Therefore,
data produced by laboratory EPRB experiments (or any
other laboratory experiments) cannot, as a matter of prin-
ciple, be cast in the form of data generated by a CFD-
compliant model. On the other hand, performing com-
puter experiments in a CFD-compliant manner is not dif-
�cult nor is it much work to change a CFD-compliant al-
gorithm into one that does not meet all the requirements
of CFD simulation. In other words, computer experiments
can be carried out in both CFD and non-CFDmode, provid-
ing quantitative information about the di�erences of these
two modes of modeling.

In the realm of �nite sets of two-valued data, a strict
derivation of Bell-type inequalities [5, 6], such as the Bell-
CHSH [5, 14] and Eberhard’s inequalities [27] require that
these data are generated in a CFD-compliant manner [23,
40]. In other words, CFD is a prerequisite for deriving Bell-
type inequalities. Therefore, to test whether or not a sim-
ulation model produces data that do not satisfy such in-
equalities, it is necessary to perform a CFD-compliant sim-
ulation. Otherwise, there is no mathematical justi�cation
for the hypothesis that these data should satisfy Bell-type
inequalities in the �rst place. Of course, we can always re-
vert to the non-CFD algorithm and check if e.g. averages
exhibit the same features as the averages obtained from
the CFD-compliant algorithm (see section 12).

In an earlier paper [23], we have adopted this strategy
to demonstrate that in the case of EPRB experiments,

1. CFD-compliant simulations can reproduce the aver-
ages and correlation of two particles in the singlet
state,

2. CFD does not distinguish classical from quantum
physics because our computer models do not contain
any quantum concepts, yet yield results that lead to
conclusions (e.g. entanglement) that are commonly
regarded as signatures of quantum physics.

In this paper, we adopt the same strategy. We construct
a CFD-compliant simulation model of the laboratory ex-
periments [34, 85], meaning that we simulate a perfected,
idealized realization of these laboratory experiments. Of
course, this does not mean that we omit essential features
of the laboratory experiments. These features have to be
included, otherwise the simulation model is not applica-
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Figure 3: Block diagram of an observation station. The speci�c form
of the input-output relations x = x(a, ϕ, r) and v = v(a, ϕ, r̂) is
not important to follow the discussion on the conceptual level and
is only essential to perform the simulations reported in this paper.
These relations are de�ned by Eqs. (19) and (20) in section 11.

ble to these laboratory experiments. see section 7 for a gen-
eral discussion of this aspect.

5 Computational model of the
laboratory experiments [34, 85]

In this section, we introduce the essential elements of the
simulation model of the laboratory experiments reported
in Ref. [34, 85]. The details of the simulation algorithm are
given in section 11. For concreteness, we adopt the termi-
nology that is used in Ref. [34] when we connect the ele-
ments of the simulation model to those of the laboratory
experiments.

As shown in Figure 1, in a typical EPRB experiment
there are three di�erent components. There is a source and
there are two observation stations. The algorithm that sim-
ulates the source is described in full detail in section 11. In
this section, we focus on the observation stations which,
because we are performing “perfected” experiments, are
assumed to be identical.

5.1 Observation station

In Figure 3, we show a graphical representation of the
function of an observation station. Input to an observa-
tion station is the setting a (representing the orientation
of the polarizer), two numbers 0 ≤ r, r̂ < 1 taken from a
list of uniform random numbers (see section 11 for further
details) and an angle 0 ≤ ϕ < 2π (representing the initial
polarization of the photon). Output of the observation sta-

tion is a two-valued variable x = ±1 and a detector-related
variable vmin ≤ v ≤ vmax.

The correspondence between the data produced by
the experimental realization of an observation station and
those generated by the computational model is as follows.
The variable x encodes the detector outcomes (either D+,i
or D−,i in station i = 1, 2) that �red. In the laboratory ex-
periments [34, 85] there is only one detector in each sta-
tion but in the computer experiment we can easily simu-
late the complete EPRB experiment (see Figure 1), hence
we consider both the “+” and “−” events. The variable v
represents the voltage signal produced by the electronics
that ampli�es the transition-edge detector current (see the
description in section IV of the supplementary material to
Ref. [34]).

If necessary, we label di�erent events by attaching the
subscript i = 1, 2 of the observation station and/or the
subscript k where k = 1, . . . , N and N denotes the to-
tal number of input events to a station. In full detail, for
the kth input at station i, the observation station i gen-
erates the output values xi = xi(ai , ϕi,k , ri,k) and vi =
vi(ai , ϕi,k , r̂i,k) according to the rules which will be spec-
i�ed in full detail in section 12. Occasionally, we write
xi(ai) = xi(ai , ϕi,k , ri,k) and vi(ai) = vi(ai , ϕi,k , r̂i,k) to
simplify the notation while still emphasizing that the x’s
and v’s only depend on variables that are local to the re-
spective station.

5.2 Photon identi�cation

In the following, we use the term detection event when-
ever the negative voltage signal produced by the electron-
ics that ampli�es the transition-edge detector current is
smaller (we are dealing with negative voltages) than the
“trigger threshold” (terminology from Ref. [34] (supple-
mentary material)), and speak of the observation of a pho-
ton whenever the same negative voltage signal is smaller
than the “photon identi�cation threshold” (about 4/3
times the “trigger threshold”) (terminology from Ref. [34]
(supplementary material)).

From the description of the laboratory EPRB experi-
ments under scrutiny, it follows immediately that not ev-
ery detection event is regarded as the observation of a
photon [34, 85]. Indeed, after all the voltage traces of an
experimental run have been recorded, a part of the col-
lected trace is analyzed by software, the photon iden-
ti�cation thresholds are “calibrated” and assuming that
the relevant properties of the whole set of traces is sta-
tionary in real time, the remaining set of traces is ana-
lyzed [34]. In Ref. [34] there is no speci�cation of the cost
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function that is being minimized by the calibration proce-
dure whereas Ref. [85](supplementary material) explicitly
states that “Because the experimentwas calibrated tomaxi-
mize violation of the CH inequality...”. This seems to suggest
that the software is designed to adjust the photon identi-
�cation thresholds such that the desired result, namely a
violation of a Bell-type inequality, is obtained.

In our simulation approach, we may assume that all
units are identical. Therefore, unlike in Ref. [34], one and
the same value of photon identi�cation threshold, de-
noted by V, can be used to identify photons. The e�ect
of the photon identi�cation threshold is captured by the
function

w(ai) = wi(ai , ϕi,k , r̂i,k) = Θ(V − vi) , i = 1, 2, (1)

where Θ(x) is equal to one if x > 0 and is zero otherwise.
Recall that, as in Ref. [34],V is negative. In the simulation,
we do not “calibrate” V but simply generate the data and
analyze the results as a function V.

The correspondencewith the data collected in the lab-
oratory experiment is as follows: a detection event is rep-
resented by xi(ai) = +1 andwi(ai) = 0 and the observation
of a photon in station i = 1, 2 is represented by xi(ai) = +1
(because there is only one, not two, transition-edge de-
tectors at each station) and wi(ai) = +1 (implemented in
software), both exactly as in the simulationmodel. Recall,
and this is new and important, that also in the simulations
the photon identi�cation is performed locally, i.e. without
communication between the observation stations.

6 Equivalence of local time-window
and time-coincidence processing

In this section we show that in spite of the conceptually
very di�erent setup, from an operational point of view,
employing local photon identi�cation thresholds is equiv-
alent to local time-window selection and also to time-
coincidence counting that is used in most EPRB experi-
ments with photons [3, 15, 57, 89].

As explained above, in the laboratory experiments a
detection event is classi�ed as being a photon if the (neg-
ative) voltage signal, denoted by v, produced by the elec-
tronics that ampli�es the transition-edge detector current
(see thedescription in section IVof the supplementaryma-
terial to Ref. [34]) is smaller than the photon identi�ca-
tion threshold V. This rejection criterion is implemented
through Eq. (1) from which it follows directly that the cri-
terion to observe a photon in these laboratory experiments

is v ≤ V. Recall that we adopted the convention of the lab-
oratory experiments [34] in whichV takes negative values.

In practice, we have vmin ≤ vi ≤ vmax and vmin ≤
V ≤ vmax with �nite vmin and vmax, hence the condition for
counting a detection event as photon may be written as

0 ≤ vi − vmin
vmax − vmin

≤ V − vmin
vmax − vmin

, i = 1, 2. (2)

De�ning a dimensionless “time” ti ≡ (vi − vmin)/(vmax −
vmin) and a dimensionless “time window” W = (V −
vmin)/(vmax − vmin), Eq. (2) reads

0 ≤ ti ≤ W , i = 1, 2, (3)

which expresses the condition to observe a photon at sta-
tion i = 1, 2 in terms of locally de�ned time slots of size
W. From Eq. (3) we have −t2 ≤ t1 − t2 ≤ W − t2 and using
−W ≤ −t2 we �nd

|t1 − t2| ≤ W , (4)

which is exactly the same criterion as the one used in
most EPRB experiments with photons [3, 15, 57, 89] (with
t1, t2 and W representing physical times in that case)
and in computer simulation models thereof [19, 20, 22–
26, 78, 90].

In summary: although physically very di�erent, lo-
cal voltage thresholds, local time windows or time-
coincidence counting are mathematically equivalent and
all serve the same purpose, namely to give an operational
meaning to the statement “a single photon (pair)” has
been identi�ed.

7 Loopholes in experimental tests
of Bell’s theorem

A useful model of an experiment needs to encompass all
relevant parameters that a�ect the experimental outcomes
and, of course, the most important elements of physical
reality, namely the data itself. Speci�cally, a physical the-
ory that describes pair-correlations of space-like separated
systems, must account for and include all procedures that
determine thedetection of the particles and the knowledge
which pair of particles and data belongs together. There-
fore, any model which purports to describe the laboratory
experiments [34, 85] that we consider in this paper must
necessarily account for the photon identi�cation thresh-
oldmechanism that is instrumental in the data-processing
step of these experiments, see section 5.2. Likewise, the
earlier generation of EPRB experiments that employ time
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Figure 4: Schematic layout of the computational equivalent of the laboratory EPRB experiments reported in Refs. [34, 85]. The input-output
relation for i = 1, 2 is given by xi = xi(ai , ϕi , ri) and vi = vi(ai , ϕi , r̂i) de�ned by Eqs. (19) and (20). Alternatively, the input-output rela-
tion may be written as (x1 , v1 , x2 , v2) = F(a1 , a2 , ϕ1 , ϕ2 , r1 , r2 , r̂1 , r̂2) showing that for �xed (a1 , a2) the simulation model satis�es the
de�nition of a CFD theory [40].

Figure 5: Computational model for the EPRB experiment satisfying the criterion of a CFD theory.

coincidence to identify pairs [3, 13, 89] can only be faith-
fully be described by models that incorporate the time-
coincidence window selection process that is an essen-
tial component of this class of experiments [19, 20, 22–
26, 78, 90].

Drawing a conclusion about a world view from mod-
els (such as those of Bell and his followers, see the Ap-
pendix) that do not properly account for the photon iden-
ti�cation threshold mechanism which, in the laboratory
experiments [34, 85], is essential for identifying the pho-
tons, requires a drastic departure from rational reasoning.
If we allow for such a departure, we might equally well
wonder what it means for our world view when we con-
struct and analyze amodel of an airplane that excludes the
engines and then observe that a real airplane can take o�
by itself. Any reasonable person would rightfully question
our ability to represent the airplane (or laboratory experi-
ments) by such a model and regard the idea that we may
have to change our world because of the contradictions to
such a model as unfounded. In other words, the only logi-
cally correct conclusion that one can draw from the failure
of Bell-type models to describe the qualitative features of
the experimental data is that these models are too simple.

The photon-identi�cation loophole that we introduce
in this paper accounts for

(i) the fact that laboratory experiments [34, 85] employ a
threshold to decide whether or not a detection event
is considered to be a photon,

(ii) the assumption that voltage signals produced by the
detection equipment may depend on the analyzer
setting (seeEq. (1)). Regarding this latter assumption,
it is of interest to recall that since the early days of
the Bell-test experiments, it is well-known that appli-
cation of Bell-type models requires at least one extra
assumption. We reproduce here the relevant passage
from Ref. [13] (p.1890): “The approach used by CHSH
is to introduce an auxiliary assumption, that if a par-
ticle passes through a spin analyser, its probability of
detection is independent of the analyser’s orientation.
Unfortunately, this assumption is not contained in the
hypotheses of locality, realism or determinism.”

(iii) the requirement that a relevant model of an experi-
ment needs to encompass all elements that a�ect the
experimental outcomes.
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There is a large body of theoretical work that considers all
kinds of loopholes in experiments that must be closed be-
fore a de�nite conclusion about the consequences of Bell
inequality tests for certain wold views can be drawn. A de-
tailed, comprehensive discussion of a large collection of
loopholes is given in Ref. [68]. Also in this respect, the
digital computer – laboratory experiment metaphor o�ers
unique possibilities because we can open and close loop-
holes at will. As this and our earlier paper [23] demon-
strate, computer simulation models of EPRB experiments
can easily be engineered to be free of e.g. detection, coin-
cidence, and memory loopholes [68] and, in addition, in-
clude features such as CFD compliance that close the con-
textuality loophole [75–77].

Wrapping up: in this paper we construct a minimal
model of the perfected version of the laboratory experi-
ment [34]. With the exception of the photon-identi�cation
loophole, this minimal model is free of the known loop-
holes and reproduces the quantum results of the EPRB
thought experiment, from which violations follow auto-
matically. This approach o�ers the unique possibility to
confront all kinds of reasonings and assumptions, such as
the (ii) above, with actual facts.

8 CFD compliance
In section 5, the operation of the simulation model of an
observation station has been de�ned such that for every
input event (a, ϕ, r, r̂), we know the values of all outputs
variables x = x(a, ϕ, r) and v = v(a, ϕ, r̂). Therefore,
the input-output relation of this unit, represented by the
diagram of Figure 3, satis�es the requirement of a CFD-
compliant model.

The computational equivalent of the EPRB experi-
ments [34, 85] is shown in Figure 4. Each time the source
S is activated, it sends one entity carrying the data ϕ1 to
station 1 and another entity carrying the data ϕ2 to station
2. The procedure for generating the ϕ’s, r’s and r̂’s is spec-
i�ed in section 12.

Upon arrival of the entities, observation stations i =
1, 2 execute their internal algorithm (completely speci�ed
by Eqs. (19) and (20)) and produces output in the form of
the pair (xi , vi). The scheme represented by Figure 4 com-

putes the vector-valued function
x1
v1
x2
v2

 =


x1 = x1(a1, ϕ1, r1)
v1 = v1(a1, ϕ1, r̂1)
x2 = x2(a2, ϕ2, r2)
v2 = v2(a2, ϕ2, r̂2)


= F(a1, a2, ϕ1, ϕ2, r1, r2, r̂1, r̂2), (5)

which clearly de�nes a CFD-compliant model. Neverthe-
less, with this CFD-compliant model we cannot construct
the quadruple (x1, x2, x′1, x′2) in a CFD-compliant manner.
Indeed, by construction, there is no guarantee that the
(ϕi,k , ri,k)’s that determine say the x1’s for the pair of set-
tings (a1, a2)will be the sameas the (ϕi,k , ri,k)’s that deter-
mine that values of the x′1’s for the pair of settings (a′1, a2).
Of course, with a simulation on a digital computer being
an ideal, fully controllable experiment, we could enforce
CFD-compliance by re-using the same (ϕi,k , ri,k , r̂i,k)’s for
every pair of settings. This would make the simulation
CFD-compliant. However, in this paper we do not so but
instead generate new values of the (ϕi,k , ri,k , r̂i,k)’s for ev-
ery new instance of input.

The layout of a CFD-compliant computer model of
the EPRB experiment is depicted in Figure 5. It uses
the same units as the model shown in Figure 4, the
only di�erence being that the input ϕi is now fed into
an observation station with setting ai and into another
one with setting a′i, something which, for obvious rea-
sons, is impossible to realize in laboratory experiments
with photons. As each of the four units operates accord-
ing to the rules given by Eq. (19) and (20), we have
(x1, x′1, x2, x′2) = X(a1, a′1, a2, a′2, ϕ1, ϕ2, r1, r2) and
(v1, v′1, v2, v′2) = T(a1, a′1, a2, a′2, ϕ1, ϕ2, r̂1, r̂2). As the
arguments of the functions X and T are independent and
may take any value out of their respective domain, the
whole system represented by Figure 5 satis�es, by con-
struction, the criterion of a CFD theory.

Note that the actual EPRB experiments produce only
pairs of data. The three pairs of data considered by Bell in-
volve, therefore, six localmeasurements and the four pairs
of CHSH involve eight local measurements. Our CFD com-
pliant model considers only quadruple (= four local) mea-
surements to simulate the actual eight possible measure-
ment outcomes of a CHSH type experiment.

9 Bell-type inequalities
It is evident from the formulation of his model that Bell
and all his followers, including Wigner, do not deal with
the issue of identifying particles and take for granted that
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the measured pairs correspond to the correlated particles.
The common prejudice that additional variables cannot
possibly defeat Bell-type inequalities is based on the as-
sumption that all sent out correlated pairs, or a represen-
tative sample of them, are measured. This reasoning does
not account for the photon identi�cation or pair-modeling
loophole: the necessary particle or pair identi�cation may
necessarily select in a way that is not representative for
all possible measurements of all possible pairs emanat-
ing from the source. In this section, we adopt Bell’s view-
point by ignoring the v-variables and demonstrate that
CFD-compliance and the existence of Bell-type inequali-
ties are mathematically equivalent.

Figure 5 shows the CFD compliant arrangement of the
computer experiment. The two stations on the left of the
source S receive the same data ϕ1 from the source. The set-
tings a1 and a′1 are �xed for the duration of the N repeti-
tions of the experiment. The same holds for the two sta-
tions on the right of the source, with subscript 1 replaced
by 2. Clearly, the algorithm represented by Figure 5 gen-
erates quadruples of output data (x1, x′1, x2, x′2) in a CFD-
compliant manner.

For any such quadruple (x1, x′1, x2, x′2) in which the
x’s only take values +1 and -1, it is straightforward to verify
that the following equalities hold:

b1 = x1x′1 + x1x2 + x′1x2 =
{
−1
+3

(6)

b2 = x1x′1 + x1x′2 + x′1x′2 =
{
−1
+3

(7)

b3 = x1x2 + x1x′2 + x2x′2 =
{
−1
+3

(8)

b4 = x′1x2 + x′1x′2 + x2x′2 =
{
−1
+3

(9)

s = x1x2 − x1x′2 + x′1x2 + x′1x′2 =
{
−2
+2

. (10)

Other equivalent sets of equalities can be obtained by re-
placing e.g. x1 by−x1 etc.Note that e.g. Eq. (6) follows from
Eq. (10) if we set x′2 = x1.

In a non-CFD setting, the data is collected as four pairs
which we may denote as (x1, x2), (x̃1, x2), (x′1, x̃2), and
(x̃′1, x̃′2)where the tilde is used to indicate that the value of
e.g. x1 obtainedwith setting (a1, a′2)may be di�erent from
the one obtained with setting (a1, a2). Instead of Eq. (10),
we now consider the expression s̃ = x1x2 − x̃1x′2 + x′1 x̃2 +
x̃′1 x̃′2 = −4, −2, 0, +2, +4 and similar ones for b̃1, . . . , b̃4,
each of them taking values −3, −1, +1, +3. If we now im-
pose that s̃ = −2, +2 and b̃1 . . . , b̃4 = −1, 3, simple enu-
meration of all possible values of the x’s and the x̃’s shows

that in order for all equalities to be satis�ed simultane-
ously we must have x̃1 = x1, x̃′1 = x′1, x̃2 = x2, x̃′2 = x′2.
In other words, imposing the constraints s̃ = −2, +2 and
b̃1 = −1, 3, . . . , b̃4 = −1, 3 on data obtained in a non-CFD
setting forces this data to form quadruples, i.e. to be CFD
compliant. It then follows immediately that CFD is nec-
essary and su�cient for the equalities Eqs. (6) – (10) to
hold.

Attaching the subscript k (k = 1, . . . , N) to label
the events, the algorithm generates the set of quadruples
{(x1,k , x

′
1,k , x2,k , x

′
2,k) | k = 1, . . . , N}. Introducing the

Bell-CHSH function

Ŝ = 1
N

N∑
k=1

sk , (11)

it follows immediately from |sk| = 2 (see Eq. (10)) that
|Ŝ| ≤ 2 for all N ≥ 1, that is we obtain the Bell-CHSH in-
equality constraining four correlations of pairs of actual
data. Put di�erently, if the output consists of quadruples of
two-valued data generated by the setup shown in Figure 5
and we ignore the v-variables then the Bell-CHSH inequal-
ity |Ŝ| ≤ 2 is always satis�ed, independent of the number
of events N ≥ 1 considered.

Similarly, from the fact that for example b1,k = −1, 3
we obtain the Leggett-Garg inequality [41, 69] for three cor-
relations of pairs of actual data and by combining b1,k =
−1, 3 with the equalities obtained by substituting x1 →
−x1 we obtain the Bell inequality involving three correla-
tions of pairs of actual data [5]. In other words, Bell-type
inequalities follow directly from the fact that quadruples
of data satisfy rather trivial arithmetic identities such as
Eq. (10).

It then also follows immediately that CFD is a nec-
essary and su�cient condition for the data (x1,k , x2,k),
(x̃1,k , x2,k), (x

′
1,k , x̃2,k), and (x̃′1,k , x̃

′
2,k) with k = 1, . . . , N

to satisfy simultaneously for all N ≥ 1, all Bell-type in-
equalities involving three and four di�erent correlations
of pairs. We emphasize that this conclusion follows from
elementary arithmetic only. Concepts such as “locality” or
any other physical argument are irrelevant for establishing
this result.

Similar reasoning yields Eberhard’s inequality which
di�ers from the Bell-CHSH inequality in the sense that it
can account for reduced detector e�ciencies [27]. For con-
venience of comparison with the original work, we tem-
porarily adopt Eberhard’s parlance and notation. Central
to Eberhard’s derivation is the so-called fate of a photon.
This fate can be either detected in the ordinary beam (la-
beled o), or detected in the extraordinary beam (labeled
e), or undetected (labeled u). For counting purposes, we
represent the fate of a photon by the symbol f , taking the
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values +1, 0, and −1 corresponding to o, u and e, respec-
tively. Introducing the variables no = f (f + 1)/2, ne =
f (f − 1)/2, and nu = (1 − f 2), it is clear that one of them
takes the value 1 with the other two taking the value 0.
For a given pair of settings, say (α1, β2), the number of
pairs with both photons su�ering fate (o) is then given by
noo(α1, β1) = no(α1)no(β1) = f1,1(f1,1 + 1)f2,1(f2,1 + 1)/4
where f1,1 = f1,i(αi) and f2,i = f2,i(βi) for i = 1, 2. There are
similar expressions for neo(α1, β2), nuo(α1, β2), etc. Fol-
lowing Eberhard, we consider the expression [27]

j = noe(α1, β2) + nou(α1, β2) + neo(α2, β1)
+ nuo(α2, β1) + noo(α2, β2) − noo(α1, β1). (12)

It is straightforward to enumerate all possible 81 values of
the 4 di�erent f -variables that appear in Eq. (12). This enu-
meration proves that j ≥ 0, independent of the values of
the settings. Attaching the subscript k (k = 1, . . . , N) to la-
bel the events as we did to derive the Bell-CHSH inequality
and introducing the Eberhard function

JEberhard =
N∑
k=1

jk , (13)

it follows immediately that JEberhard ≥ 0 for all N ≥ 1.
In the laboratory experiments [34, 85] there is only one

detector per observation station. Hence it makes sense to
regard also say, the e photons, as undetected. In terms of
the “fate” variables f introduced above this amounts to let-
ting f taking the values +1 and 0 corresponding to o and
u, respectively. Instead of Eq. (12), we now consider the ex-
pression

jCH = nou(α1, β2) + nuo(α2, β1) + noo(α2, β2) − noo(α1, β1).
(14)

Enumerating all possible 16 values of the 4 di�erent f -
variables that appear in Eq. (13) proves that jCH ≥ 0, in-
dependent of the values of the settings. Attaching the sub-
script k (k = 1, . . . , N) to label the events as before and
introducing the CH function

JCH =
N∑
k=1

jCH,k , (15)

it follows immediately that the CH inequality [13] JCH ≥ 0
holds for all N ≥ 1.

In short: if for all N, the x’s (f ’s) are generated accord-
ing to aCFD-compliant procedure theBell-CHSH (theEber-
hard and CH) inequality is (are) satis�ed. In essence, this
result is embodied in thework of George Boole [8], see also
Ref. [21, 83]. Moreover, as CFD implies that all Bell-type in-
equalities hold for all N ≥ 1, there is no room for specu-
lating without violating at least one of the rules of Aris-
totelian logic that something “spooky” is going on if we

encounter data that violate a Bell-type inequality. The log-
ically correct conclusion that one can draw from such a
violation is that these data have not been generated in a
CFD-compliant manner.

10 An inequality accounting for
photon identi�cation

In this section, we address the modi�cations to the in-
equality |Ŝ| ≤ 2 that ensue when we take into account the
fact that laboratory experiments employ the photon iden-
ti�cation threshold to decide whether or not a detection
event corresponds to the observation of a photon.

The average detection event counts and detection
event pair correlation are given by

Êi(ai) = 1
N
∑

xi(ai) , i = 1, 2

Ê(a1, a2) = 1
N
∑

x1(a1)x2(a2), (16)

respectively, and we have similar expressions for the other
choices of settings. In Eq. (16) and in the equations that
follow, it is understood that

∑
means

∑N
k=1, i.e. the sum

over all input events, represented by values of the ϕ’s. As
shown in section 9, if the x’s that enter Eq. (16) have been
obtained by a CFD-compliant procedure, the correlations
Ê(a1, a2), . . . satisfy Bell-type inequalities.

In contrast to Eq. (16), the average photon counts and
photon pair correlation for the settings (a1, a2) are given
by

Ei(ai) =
∑
w(ai)xi(ai)∑
w(ai)

, i = 1, 2

E(a1, a2) =
∑
w(a1)w(a2)x1(a1)x2(a2)∑

w(a1)w(a2)
, (17)

where, as explained in section 5.2, the w’s in Eq. (17) ac-
count for the e�ect of the photon identi�cation thresholds
and take values 0 or 1. Clearly, Eq. (17) is very di�erent
from Eq. (16) unless all the w’s that appear in Eq. (17) are
equal to 1, in which case the photon identi�cation thresh-
old mechanism is super�uous and unlike as in the labora-
tory experiment [34], the number of photon and detection
events is the same.

In the analysis of the experimental data, the pho-
ton identi�cation threshold is chosen such that many of
the w’s are zero [34]. Hence from the discussion in sec-
tion 9, it follows immediately that with some w’s zero, it
is impossible to prove that the Bell-CHSH function S =
S(a1, a2, a′1, a′2) ≡ E(a1, a2) − E(a1, a′2) + E(a′1, a2) +
E(a′1, a′2) satis�es the inequality |S| ≤ 2.
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However, it directly follows from the proof given in our
earlier paper [23] that if the x’s and w’s have been gener-
ated by a CFD-compliant procedure, the Bell-CHSH func-
tion S can never violate the inequality

|S| =
∣∣∣E(a1, a2) − E(a1, a′2) + E(a′1, a2) + E(a′1, a′2)∣∣∣ ≤ 4−2δ .

(18)
The term 2δ in Eq. (18) is a measure for the number of
paired events that have been rejected relative to the num-
ber of emitted pairs. In detail, 0 ≤ δ ≡ N ′/Nmax ≤ 1 where
N ′ denotes the number of input events for which the neg-
ative voltage signal of all the photons is smaller than the
photon identi�cation threshold V and Nmax is the maxi-
mumnumber of contributing pairs per setting. If all paired
events would be regarded as photon pairs then δ = 1 and
then, and only then we recover the Bell-CHSH inequality
|S| ≤ 2. If the x’s and w’s have not been generated by a
CFD-compliant procedure, there is only the trivial bound
|S| ≤ 4.

The inequality Eq. (18) is a rigorous mathematical fact
that holds if, for all N ≥ 1, the x’s and v’s are generated in
a CFD-compliantmanner and none of the denominators in
Eq. (17) is identically zero (in which case no photon pairs
have been detected). Conversely, if we �nd a set of x’s and
v’s that yields a value of |S| that exceeds 4 − 2δ, we can
only conclude that these data have not been obtained from
a CFD-compliant procedure. Any other conclusion would
not be logically justi�ed.

In analogy with the derivation of Eq. (18), onemay de-
rive an Eberhard-type or CH-type inequality that accounts
for the w’s but as such inequalities do not add anything
to the discussion that follows, we do not discuss them any
further.

11 Discrete-event simulation
algorithm

In this section, we specify the algorithm and the simula-
tion procedure in full detail. The algorithm thatmimics the
operation of the particle source is very simple. For each
event k = 1, . . . , N, a uniform random generator is used
to generate a �oating-point number 0 ≤ ϕ1,k ≤ 2π. This
number is input to the stations with setting (a1, a′1) and
another number ϕ2,k = ϕ1,k + π/2 is input to the sta-
tions with setting (a2, a′2). Because of ϕ2,k = ϕ1,k + π/2,
the kth event simulates the emission of a photon pair with
maximally correlated, orthogonal polarizations. In this re-
spect, we deviate from what is done in the laboratory ex-
periments [34, 85] in the following sense. Unlike in the

computer simulation, the detectors used in these labora-
tory experiments are not perfect. As already mentioned,
Eberhard’s inequality can account for reduced detector ef-
�ciencies and this feature can be put to good use through
minimizing the value of JEberhard with respect to the corre-
lation [27]. This is what is done in the laboratory experi-
ments [34, 85]. However, in our simulation model, the de-
tectors are perfect. Hence the minimum value of JEberhard
will be obtained by choosing maximally correlated, or-
thogonal polarizations [27]. Recall that our aim here is to
simulate the most ideal, perfect experiment that accounts
for all the essential features of the laboratory experiments,
not to simulate a real laboratory experiment including
trams passing by [34] etc.

Upon receiving the inputϕ an observation station (see
Figure 3) executes the following two steps. First it retrieves
two uniform random numbers r and r̂ from a list of such
numbers (or, more conveniently, generates these numbers
on the �y) and then

1. computes

c = cos[2(a − ϕ)] , s = sin[2(a − ϕ)], (19)

2. sets

x = sign(1 + c − 2 * r) , v = r̂|s|d(Vmax − Vmin) − Vmax,
(20)

where d, is an adjustable parameter to be discussed later
and 0 ≤ Vmax, and 0 ≤ Vmin ≤ Vmax set the range of the
voltage signal. From Eq. (20) it follows that −Vmax ≤ v,V ≤
−Vmin, as in the laboratory experiment [34].

Our choice for the speci�c functional forms of x =
x(a, ϕ, r) and v = v(a, ϕ, r̂) is inspired by previouswork in
which it was shown that a similar model, which employs
time-coincidence to identify pairs, exactly reproduces the
single particle averages and two-particle correlations of
the singlet state if the number of events becomes very
large [26, 72].

Equations (19) and (20) form the core of the simulation
algorithm which has the following key features:
– For any �xed value of ϕ and uniformly distributed

random numbers r, the unit generates a sequence of
randomly distributed x’s such that the average of the
x’s agrees (within statistical �uctuations) with Malus’
law, i.e. the normalized frequencies to observe x = +1
and x = −1 are given by cos2(a − ϕ) and sin2(a − ϕ),
respectively.

– The presence of an output variable v which serves to
mimic the detector traces recorded in the laboratory
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experiments. Note that the explicit expression of v =
v(a, ϕ, r̂) shows a dependence on the local setting of
the station. Such a dependence cannot be ruled out a
posteriori but �nds a post-factum justi�cation in the
fact that the simulations reproduce the results for two
particles in a singlet state, see section 13.

– The use of the random numbers 0 ≤ r, r̂ ≤ 1 mimics
the uncertainties about the outcomes, as observed in
experiments. Thereby, it is implicitly understood that
for every instance of new input, new values of the uni-
form random numbers r and r̂ have been generated.

– By construction, the algorithm is a metaphor for
Einstein-local experiments: changing a1 (a2) does not
a�ect the present, past or future values of x2 (x1) or v2
(v1). In plain words, the output of one particular unit
depends on the input to that particular unit only.

For the settings of the observation stations, we take a1 =
θ + π/8, a′1 = a1 + π/4, a2 = π/8, a′2 = 3π/8 and let θ
vary from 0 to π. For this choice of settings, quantum the-
ory for a system in the singlet state predicts E(a1, a2) =
E(a′1, a′2) = cos 2θ, E(a1, a′2) = E(a′1, a2) = sin 2θ and
S(a1, a2, a′1, a′2) = −2

√
2 cos(2θ + π/4), the latter reach-

ing its maximum 2
√
2 at θ = 3π/8. When we operate the

computer model in non-CFD mode, random numbers are
used to make a choice between the settings ai and a′i, for
i = 1, 2, exactly as in the experiments [34, 85].

The simulation procedure is quite simple. We choose
a �xed photon identi�cation threshold V, generate input
pairs k = 1, . . . , N, collect corresponding outputs in terms
of x’s and w’s, and compute the single- and two-particle
averages according to Eq. (18), the Bell-CHSH function
S(a1, a2, a′1, a′2) = E(a1, a2) − E(a1, a′2) + E(a′1, a2) +
E(a′1, a′2), and the Eberhard function J given by Eq. (13) .

Because the computer experiment is “perfect”, it dif-
fers from the laboratory experiment in the sense that all
pairs are created “on demand” and all emitted pairs create
onedetection event in each station (there areno “false”de-
tection events) but exactly as in the laboratory experiment,
the local photon identi�cation threshold at each observa-
tion station serves to decide whether a photon has arrived
or not.

12 Computer simulation results
This section reports the results of simulations with N =
105 events for the CFD-compliant and N = 105 events
per setting for the non-CFD model, with Vmin = 1/2 and
Vmax = 1. Note that the “time-tag threshold” and a “trig-
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Figure 6: The correlation E(a1 , a2) (○), the single-particle averages
E1(a1 , a2) (4) and E2(a1 , a2) (5) as a function of θ = a1 − a2.
(a) CFD-compliant model; (b) non-CFD model. Solid line: quantum
theoretical prediction E(a1 , a2) = − cos 2θ. Dashed line: quantum
theoretical prediction E1(a1 , a2) = E2(a1 , a2) = 0. The photon
identi�cation threshold is V = −0.995.

ger threshold” (terminology fromRef. [34] (supplementary
material)) are important to the laboratory implementation
but are super�uous, meaning that they do not a�ect the
results of our computer experiments in any way. Indeed,
in our perfect experiments, there is no ambiguity in deter-
mining when a particle arrives at the observation station.
Nevertheless, to counter possible (pointless) critique that
we have not incorporated into our simulation model the
two thresholds that are essential to the laboratory imple-
mentation, we have chosen Vmin = 1/2 in order to leave
room for introducing these thresholds.

We limit the discussion to the case d = 4 because
we know from earlier work [20, 72, 90], which uses time-
coincidence selection, that for d = 4 the computer model
reproduces the quantum theoretical result of the correla-
tion of two particles in the singlet state, Malus’ law for
the single-particle averages etc. if N → ∞ followed by
V→ −Vmax.
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Figure 7: The Bell-CHSH function S(θ + π/8, θ + 3π/8, π/8, 3π/8) ob-
tained from the data shown in Figure 6 as a function of θ = a1 − a2.
(a) CFD-compliant model; (b) non-CFD model. Solid line: quan-
tum theoretical prediction S(θ + π/8, θ + 3π/8, π/8, 3π/8) =
−2

√
2 cos(2θ + π/4). The photon identi�cation threshold is

V = −0.995.

It is not di�cult to see that single-particle averages
E1(a1, a2), E2(a1, a2) etc. are expected to be zero, up to
�uctuations. The reason is that ϕ → ϕ + π/2 changes the
sign of the x’s but has no e�ect on the values of the v’s (see
Eq. (20)). Therefore, if the ϕ′s uniformly cover [0, 2π[, the
number of times that x = +1 and x = −1 appear is about
the same. All our simulation results are in concertwith this
prediction.

In Figure 6, we present the simulation data of the
correlation E(a1, a2) (○), the single-particle averages
E1(a1, a2) (4) and E2(a1, a2) (5) as a function of θ =
a1 − a2, as obtained from a CFD-compliant (Figure 6(a))
and non-CFD (Figure 6(b)) simulation. All the simulation
data are in excellent agreement with the quantum theo-
retical description of a two-particle system in the singlet
state which predicts E1(a1, a2) = E2(a1, a2) = 0 and
E(a1, a2) = − cos 2θ. Within statistical �uctuations, it is
di�cult to distinguish between CFD-compliant and non-
CFD simulation data, in concert with our earlier work [23].
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Figure 8: (a) The Eberhard function JEberhard given by Eq. (13) as a
function of θ, for the CFD-compliant (open symbols) and non-CFD
model (solid symbols), with (circles) and without (squares) using
the photon identi�cation threshold (see text). (b) The value of δ
entering the inequalities Eq. (18) as a function of θ. The photon
identi�cation threshold V = −0.995.

In Figure 7 we show the data of the Bell-CHSH func-
tion S(θ + π/8, θ + 3π/8, π/8, 3π/8) as a function of θ.
Clearly the simulation results are in excellent agreement
with the quantum theoretical prediction S(θ + π/8, θ +
3π/8, π/8, 3π/8) = −2

√
2 cos(2θ + π/4). In both Figs. 6

and Figure 7, there are deviations from the quantum the-
oretical prediction which are not due to statistical �uctua-
tions. These deviations can be reduced systematically and
eventually vanish by letting V → −Vmax (V →> −Vmax), a
fact that can be proven rigorously for the probabilistic ver-
sion of the simulation model [20, 72, 90].

We note in passing that the observation that the fre-
quency distribution of many events agrees with the prob-
ability distribution of a singlet state is a post-factum char-
acterization of the repeated preparation andmeasurement
process only, not a demonstration that at the end of the
preparation stage, each pair of particles actually is in an
entangled state. The latter describes the statistics, not a
property of a particular pair of particles [4].
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Results of the Eberhard function Eq. (13) as a function
of θ are given in Figure 8(a). The correspondence between
the symbols used in Eberhard’s and this paper are as fol-
lows: o ⇔ +1, e ⇔ −1, α1 ⇔ a′1, α2 ⇔ a1, β1 ⇔ a2,
and β2 ⇔ a′2. As expected from the requirements to de-
rive Eq. (13) (see section 9), the CFD-compliant simula-
tion without the photon identi�cation threshold satis�es
JEberhard ≥ 0 for all θ whereas processing the data as in the
laboratory experiment, i.e. by employing aphoton identi�-
cation threshold, yields JEberhard < 0 for a non-zero interval
of θ’s. As is clear from Figure 8(a), the results of Eberhard
function Eq. (13) do not change signi�cantly if we use re-
place the CFD-compliant simulationmodel by its non-CFD
version. The reason for this apparent violation is that the
data obtained through the application of the photon iden-
ti�cation mechanism do not satisfy the mathematical re-
quirements for deriving Eq. (13).

For completeness, in Figure 8(b) we present results for
the function δ which determines the upperbound to the
Bell-CHSH function in the case that the photon identi�-
cation threshold is being used to discard detection events
(see Eq. (18)). From Figure 8(b), it follows that δ < 0.8.
Hence Eq. (18) predicts an upperbound that is not smaller
than 3.4, large enough to include the maximum value of
2
√
2 ≈ 2.83 predicted by the quantum theory of the po-

larizations of two photons (or, equivalently, two spin-1/2
particles).

Finally, it is instructive to compare the number of de-
tection events that the photon identi�cation threshold re-
jects as being a photon. In the laboratory experiment [34],
the number of trials is about 3.5 × 109 and the total num-
ber of so-called “relevant counts”, i.e. the number of times
that at least one photon was identi�ed by means of the
photon identi�cation thresholds (by software), is about
1.8 × 105. Thus, in this experiment the overall number of
events considered to be relevant for the physics, relative
to the number of detection events is about 0.005%. For
comparison, in the simulations, a photon identi�cation
threshold V = −0.995 identi�es about 23% of the detec-
tion events as photons, several orders of magnitude larger
than in the laboratory experiment. Clearly, the quality of
the data collected in the laboratory experiments are not on
par with the quality of the data produced by the computer
experiments but obviously, the latter is much easier to re-
alize and use than the former.
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Figure 9: Demonstration that the simulation model cannot repro-
duce the correlation of the quantum system if the voltage signals v1
and v2 are independent of the settings a1 and a2, respectively.
(a) The correlation E(a1 , a2) (○), the single-particle averages
E1(a1 , a2) (4) and E2(a1 , a2) (5) as a function of θ = a1 − a2
as obtained from a CFD-compliant simulation. (b) The Bell-CHSH
function S(θ + π/8, θ + 3π/8, π/8, 3π/8) obtained from the data
shown in Figure 9(a) as a function of θ. The photon identi�cation
threshold V = −0.995, Vmin = 0.95, Vmin = 1, and d = 0. Solid
lines: quantum theoretical predictions.

13 Post-factum justi�cation of the
simulation model

We have already drawn attention to the fact that the ex-
plicit expression of the voltage v = v(a, ϕ, r̂) shows a de-
pendence on the local setting of the station through the
factor | sin[2(a − ϕ)]|d (see Eqs. (19) and (20)) and men-
tioned that such a dependence cannot be ruled out a pos-
teriori. In this section, we examine the consequences of re-
moving this dependence.

In Figure 9, we show results for d = 0, in which case
the randomvariations of the voltage signals v1, v′1, v2, and
v′2 do not depend on a1, a′1, a2, and a′2, respectively. In-
stead of E(a1, a2) ≈ − cos 2θ for d = 4, the simulation
for d = 0 yields E(a1, a2) ≈ −(1/2) cos 2θ and, as Fig-
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ure 9(b) shows, |S(θ + π/8, θ + 3π/8, π/8, 3π/8)| ≤ 2.
Therefore, the only way to have simulation models of the
laboratory experiment [34] reproduce the quantum theo-
retical prediction of the polarizations of two photons (or,
equivalently, two spin-1/2 particles) is to assume that v1,
v′1, v2, and v′2 depend on a1, a′1, a2, and a′2. Of course,
there is no good argumentwhy, in a particular experiment,
this dependence should be of the form Eq. (20). We re-
peat that we have chosen the form Eq. (20) because our
main goal is to reproduce by a CFD-compliant, manifestly
non-quantummodel, the quantum theoretical predictions
of the polarizations of two photons (or, equivalently, two
spin-1/2 particles), which as a by-product, yields |S(θ +
π/8, θ + 3π/8, π/8, 3π/8)| > 2.

Disregarding the original motivation to perform the
Bell-test experiments, the experimental setup shown in
Figure 1 can be regarded as a tool to characterize the re-
sponse of the observation stations to the incoming sig-
nals. In the case at hand, what is under scrutiny is the re-
sponse of the observation station, i.e. of its optical com-
ponents, the transition-edge detector and the electronics
that ampli�es its current, under the condition that the in-
cident light is extremely feeble. Viewed from this perspec-
tive, our simulations support the hypothesis that the labo-
ratory experiments [34, 85] convincingly demonstrate that
the statistics of the observed photons, as de�ned by the
photon detection threshold, depends on the settings (and
hence on the polarizations assigned to the photons) of the
observation stations.

It is of interest to mention here that since the early
days of the Bell-test experiments, it is well-known that ap-
plication of a Bell-type model requires at least one extra
assumption. We reproduce here a passage from Ref. [13]
(p.1890): “The approach used by CHSH is to introduce an
auxiliary assumption, that if a particle passes through a
spin analyser, its probability of detection is independent of
the analyser’s orientation. Unfortunately, this assumption is
not contained in the hypotheses of locality, realism or de-
terminism.” It is stunning that although there is at least
one auxiliary assumption involved in testing e.g. the CHSH
inequality with Bell-test data, the possibility that this as-
sumption is not valid is, to the best of our knowledge, ig-
nored in the experimental studies. As a matter of fact, as
we have argued above, all Bell-test experiments with pho-
tons performed up to this day can be regarded as direct ex-
perimental proof that this auxiliary assumption is invalid.
In view of the intricate atomic-scale processes that are in-
volved when light passes through a material, this conclu-
sion seems very reasonable but is, of course,way less spec-
tacular than the conclusion that Bell-type experiments can
be used to rule out certain world views.

14 Conclusion
The general message of this paper is that a model that
purports to describe the data produced by an experiment
should account for all the data that are relevant for the
analysis of the experimental results. In the case at hand,
the situation is as follows:

(i) experimental data [34] are interpreted in terms of a
Bell-type model that uses only half of the variables
(the x’s),

(ii) in the actual experiments [34] the other half of the
variables (the v’s) is essential for the identi�cation of
the photons but are ignored in Bell-type models,

(iii) the failure of Bell-type models to describe the exper-
imental data is taken as a proof that “local realism”
(local in Einstein’s sense) is incompatible with quan-
tum theory and is therefore is declared dead.

We believe that it requires an exotic form of logic to recon-
ciliate the last statement (iii) with the second one (ii).

To head o� possible misunderstandings, the authors
of this paper do not necessarily subscribe to all or any
forms of what is called local realism, CFD theories, or ...
We are of the opinion that the arguments based on Bell’s
theorem in conjunction with Bell-type experiments su�er
fromwhatwe earlier called the photon identi�cation loop-
hole. One simply cannot blame amodel that only accounts
for part of the data for not describing all of them. Regard-
ing the previous sentence, Albert Einstein’s quote “make
it as simple as possible, but not simpler” is more pertinent
than ever.

The challenge for the Bell-experiments community is,
therefore, to construct an EPRB-type experiment with a
photon (pair) identi�cation that cannot, from the perspec-
tive of the simple Bellmodels, be turned into a “loophole”.
Our general proofs of the derivation of Bell-type inequali-
ties for actual data (see section 9), indicate that this chal-
lenge cannot be met.

Acknowledgement: We like to thankD.Willsch, F. Jin, and
M. Nocon for useful comments and discussions.

A Probabilistic models
Traditionally, mathematical models of the EPRB experi-
ments are formulated in terms of probabilistic models [1,
2, 5, 9, 10, 14, 16, 17, 21, 29–33, 35, 39, 42–55, 58, 60–
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67, 70, 71, 73–77, 80, 83, 84, 86], often without explicitly
mentioning Kolmogorov’s axiomatic framework of proba-
bility theory [37, 59]. However, there is a considerable, con-
ceptual gap between a laboratory EPRB experiment and a
probabilistic model thereof. The (over)simpli�cations re-
quired to come up with a tractable, proper probabilistic
model of a laboratory EPRB experiment are key to the un-
derstanding of the phenomena involved.

Whenweuse the “digital computer – laboratory exper-
iment”metaphor, both the simpli�cation and replacement
aremade during the formulation of the computermodel. A
computer simulation algorithm entails a complete speci�-
cation of how the data are generated. In this respect, all
“physically relevant” processes are well-de�ned (by con-
struction) and known explicitly in full detail. There are no
uncertainties or unknown in�uences. Note that the reverse
operation, i.e. to construct an algorithm for a digital com-
puter out of a probabilistic model is, as a matter of princi-
ple, impossible. At most, a probabilistic model can serve
as a guide to construct an algorithm, see also [66].

In the particular case where the observed phenomena
take the form of data generated by simulations of EPRB
experiments on a digital computer, the transition from
the observed phenomena to suitable mathematical mod-
els does not su�er from the many “uncertain” factors that
may or may not play an essential role in the laboratory ex-
periments and is, therefore, a fairly simple transition. In
this section, we start from a computer simulation model
and construct the probabilistic model thereof. We start by
showing that the simplest of these models are identical to
those proposed and analyzed by Bell [6] and thenmove on
to the construction of a probabilistic model for the com-
puter model of the recent Bell-type experiments [34, 85]
that we use in our simulationwork presented in section 12.

A.1 Bell-type models

Consider the CFD simulation model in which we explicitly
ignore the v-variables. For a given input to the observation
stations, the outcome is one of the so-called elementary
events [37, 59], in this case one of the 16 di�erent quadru-
ples (x1, x′1, x2, x′2). In the language of probability theory,
the set of these 16 di�erent quadruples is called the sample
space Ω [37, 59], the set of elementary events, from which
we construct the so-called σ-�eld F of subsets of Ω, con-
taining the impossible (null) event and all the (compound)
events in whose occurences we may be interested [37, 59].
In modeling the computer experiments, we only need to
consider �nite sets, hence we do not have to worry about

the mathematical subtleties that arise when dealing with
in�nite sets [37, 59].

The next step is to assign a real number, a proba-
bility measure, between zero and one that expresses
the likelihood that an element of the set Ω oc-
curs [37, 59]. We denote this (conditional) probability
measure by P(x1, x′1, x2, x′2|a1, a′1, a2, a′2, Z), the part
|a1, a′1, a2, a′2, Z) indicating that the settings and all
other conditions, denoted collectively by Z, do not
change during the imaginary probabilistic experi-
ment. By de�nition, the probability measure satis�es∑

(x1 ,x′1 ,x2 ,x′2)∈Ω
P(x1, x′1, x2, x′2|a1, a′1, a2, a′2, Z) =

1 [37, 59].
Note that a probabilitymeasure is a purelymental con-

struct [59]. If it were not, we could interchange the exper-
iment/computer simulation, the results of which directly
connect to our senses, with the imaginary world of math-
ematical models and prove theorems, not only about the
mathematical description, but also about our sensory ex-
periences, a tantalizing possibility. One such example that
exploits intricate features of set theory is given in Ref. [81],
in which it is explicitly stated that there does not exist an
algorithm to actually calculate the relevant functions. In
otherwords, this example cannot be realized on a physical
device such as a digital computer, not even approximately.
Moreover, unlike the simulation algorithm executing on
a digital computer, the probabilistic description does not
contain a speci�cation of the process that actually pro-
duces an event:wehave to call upTyche to do this for us. In
other words, a probabilistic model is incomplete in that it
only describes the outcomes of the simulation procedure,
not the procedure itself. However, this incompleteness is
partially compensated for by the fact that the calculation
of averages and correlations no longer involves the num-
ber of events N. We have for instance

Ẽ12(a1, a′1, a2, a′2) = (21)∑
Ω
x1x2P(x1, x′1, x2, x′2|a1, a′1, a2, a′2, Z),

and we have similar expressions for the other two-particle
averages and also for the single-particle averages. Here
and in the following, we use the shorthand notation

∑
Ω =∑

(x1 ,x′1 ,x2 ,x′2)∈Ω
. We have written Ẽ instead of Ê to empha-

size that the former have been calculated within a proba-
bilistic model whereas the latter involve calculations with
actual data. From Eq. (21), we have

S̃(a1, a2, a′1, a′2) =
∑
Ω

(
x1x2 − x′1x2 + x1x′2 + x′1x′2

)
× P(x1, x′1, x2, x′2|a1, a′1, a2, a′2, Z),

(22)

Unauthenticated
Download Date | 11/25/17 6:30 AM



730 | Hans De Raedt, Kristel Michielsen, and Karl Hess

and because the elementary events are quadruples, it
follows directly from Eq. (10) that |S̃(a1, a2, a′1, a′2)| ≤
2. Thus, in the probabilistic realm, not in the world of
the observed two-valued data, the existence of the Bell-
CHSH inequality follows from the existence of a proba-
bility measure for the elementary events of quadruples
(x1, x′1, x2, x′2). Moreover, it can be shown that with some
additional requirements on its marginals, the existence of
such a probability measure is necessary and su�cient for
Bell-type inequalities to hold [11, 30, 82, 87, 88].

It is clear from Figure 5 that xi and x′i for i = 1, 2
only depend on the corresponding ai and a′i, respec-
tively. However, the probability measure for quadruples,
P(x1, x′1, x2, x′2|a1, a′1, a2, a′2, Z), does not express this
basic property of the computer model, nor does it explic-
itly express the dependence on the ϕ’s.

A simple way to incorporate all these features of the
simulationmodel in a probabilistic description is to de�ne
a new joint probability measure for quadruples by

P′(x1, x′1, x2, x′2|a1, a′1, a2, a′2, Z) =∫
P(x1|a1, ϕ1, Z)P(x′1|a′1, ϕ1, Z)P(x2|a2, ϕ2, Z)

× P(x′2|a′2, ϕ2, Z)µ(ϕ1, ϕ2)dϕ1dϕ2, (23)

where P(x1|a1, ϕ1, Z) etc. are the “local” probabilities to
observe x1 etc., the integration is over the whole domain
of ϕ1 and ϕ2 and µ(ϕ1, ϕ2) is a non-negative, normal-
ized density. With the new probability measure Eq. (23),
Eq. (21) simpli�es considerably. For instance, for the de-
tection events we have Ẽ12(a1, a′1, a2, a′2) = Ẽ(a1, a2)
where

Ẽ(a, b) =
∑
x,y=±1

∫
xyP(x|a, ϕ1, Z)P(y|b, ϕ2, Z)

× µ(ϕ1, ϕ2)dϕ1dϕ2. (24)

Instead of Eq. (22), we now have

|S̃(a1, a2, a′1, a′2)| =|Ẽ(a1, a2) − Ẽ(a1, a′2)

+ Ẽ(a′1, a2) + Ẽ(a′1, a′2)| ≤ 2, (25)

which is the Bell-CHSH inequality in probabilistic form [5,
14].

From Eq. (23), it follows directly that

P′(x1, x2|a1, a2, Z)

=
∑
x′1=±1

∑
x′2=±1

P′(x1, x′1, x2, x′2|a1, a′1, a2, a′2, Z)

=
∫
P(x1|a1, ϕ1, Z)P(x2|a2, ϕ2, Z)µ(ϕ1, ϕ2)dϕ1dϕ2,

(26)

which expresses the probability measure
P′(x1, x2|a1, a2, Z) in terms of the single-variable proba-
bility measures P(x1|a1, ϕ1, Z) and P(x2|a2, ϕ2, Z) and
the measure µ(ϕ1, ϕ2) of the variables ϕ1 and ϕ2.

The factorized form Eq. (26) is the landmark of the
so-called “local hidden-variable models” [5, 13]. Although
“local” is often used to express the notion that physical in-
�uences do not travel faster than the speed of light it is, in
the context of a probabilistic model (computer model), an
expression of statistical (arithmetic) independence only.
Bell’s theorem uses the factorized form Eq. (26) to state
that quantum mechanics is incompatible with local real-
ism, theworld view inwhich physical properties of objects
exist independently of measurement and where physical
in�uences cannot travel faster than the speed of light [34].

In one respect, Eq. (26) is grossly deceiving, namely it
does not re�ect the elementary fact that the parent prob-
ability measure Eq. (23) from which Eq. (26) follows, con-
cerns quadruples, not pairs. Without the knowledge that
Eq. (26) is in fact a marginal distribution of the probability
measure Eq. (23) for quadruples, one is inclined to think,
as Bell did and his followers still seem to do, that there are
“physical” assumptions involved in justifying the factor-
ized form Eq. (26). However, this is not the case because
the Bell-type inequalities hold if and only if there exists
a joint probability measure for the quadruples [30]. This
mathematical statement is void of any physical meaning.

In summary: in this subsection we have shown that a
probabilisticmodel of the CFDcomputer simulationmodel
that does not account for the photon identi�cation mech-
anism of the EPRB laboratory experiment, automatically
leads to the models introduced by Bell [5]. Within this
framework, the existence of Bell-type inequalities and the
corresponding joint probability measures are mathemati-
cally equivalent [30]. The latter statement, which relates to
imaginary data only, corresponds to the statement that in
the realm of actual two-valued data, the existence of Bell-
type inequalities and CFD-compliant generation of all the
quadruples are mathematically equivalent, see section 9.

A.2 Incorporating the photon identi�cation
threshold

Referring to Eq. (5), the extension of the construction out-
lined in section A.1 to incorporate the local photon identi-
�cation mechanism is of purely technical nature. Instead
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of Eq. (23), we now introduce

P′′(x1, v1, x′1, v′1, x2, v2, x′2, v′2|a1, a′1, a2, a′2, Z)

=
∫
P(v1|a1, ϕ1, Z)P(x1|a1, ϕ1, Z)P(v′1|a′1, ϕ1, Z)

× P(x′1|a′1, ϕ1, Z)P(v2|a2, ϕ2, Z)P(x2|a2, ϕ2, Z)

× P(v′2|a′2, ϕ2, Z)P(x′2|a′2, ϕ2, Z)
× µ(ϕ1, ϕ2) dϕ1 dϕ2 dv1 dv2, (27)

where P(v1|a1, ϕ1, Z) etc. are the “local” probability den-
sities to pick v1 etc., and all other symbols have the same
meaning as in Eq. (23).

It is now straightforward to write down the proba-
bilistic expressions that incorporate in exactly the same
manner as in the analysis of the laboratory experiment
data [34], the e�ect of the photon identi�cation threshold.
For instance, we have for the photon counts

Ẽ(a1, a2) =
A(a1, a2)
B(a1, a2)

,

where
A(a1, a2) =

∑
x1 ,x2=±1

∫
x1x2Θ(V − v1)Θ(V − v2)

× P(v1|a1, ϕ1, Z)P(x1|a1, ϕ1, Z)P(v2|a2, ϕ2, Z)
× P(x2|a2, ϕ2, Z)µ(ϕ1, ϕ2) dϕ1 dϕ2 dv1 dv2,

and
B(a1, a2) =

∫
Θ(V − v1)Θ(V − v2)P(v1|a1, ϕ1, Z)

× P(v2|a2, ϕ2, Z)µ(ϕ1, ϕ2) dϕ1 dϕ2 dv1 dv2,
(28)

and, as before, we have similar expressions for the other
expectations in Eq. (21) and for the single-particle aver-
ages.

The expressions for the single- and two-particles av-
erages that derive from the probabilistic model Eq. (27)
all have the form that is characteristic of a genuine “local
hidden-variable model”, as exempli�ed by Eq. (28). Only
“local” detection and photon identi�cation are involved.
The values of the variables local to one observation station
do not depend on variables that are local to another obser-
vation station. The only formof “communication”between
the stations is through the “hidden” variables ϕ1 and ϕ2.

It directly follows from the general discussion of sec-
tion 6 that A(a1, a2) and B(a1, a2) can be expressed in
terms of both the local time-window and time-coincidence
selection. In detail, for the local time-window selectionwe

have

A(a1, a2) =
∑

x1 ,x2=±1

∫
x1x2Θ(W − t1)Θ(W − t2)Θ(t1)Θ(t2)

× P(t1|a1, ϕ1, Z)P(x1|a1, ϕ1, Z)P(t2|a2, ϕ2, Z)
× P(x2|a2, ϕ2, Z)µ(ϕ1, ϕ2) dϕ1 dϕ2 dt1 dt2,

and
B(a1, a2)=

∫
Θ(W − t1)Θ(W − t2)Θ(t1)Θ(t2)P(t1|a1, ϕ1, Z)

× P(t2|a2, ϕ2, Z)µ(ϕ1, ϕ2) dϕ1 dϕ2 dt1 dt2,
(29)

for the time-coincidence selection we have

A(a1, a2) =
∑

x1 ,x2=±1

∫
x1x2Θ(W − |t1 − t2|)P(t1|a1, ϕ1, Z)

× P(x1|a1, ϕ1, Z)P(t2|a2, ϕ2, Z)P(x2|a2, ϕ2, Z)
× µ(ϕ1, ϕ2) dϕ1 dϕ2 dt1 dt2,

and
B(a1, a2) =

∫
Θ(W − |t1 − t2|)P(t1|a1, ϕ1, Z)

× P(t2|a2, ϕ2, Z)µ(ϕ1, ϕ2) dϕ1 dϕ2 dt1 dt2.
(30)

From earlier work based on representation
Eq. (30) [20, 26, 72] and from the simulation results
presented in section 12, it follows directly that the
probabilistic model de�ned by Eq. (27) is capable of repro-
ducing the predictions of quantum theory for the single-
and two-particles averages of two photon polarizations
in the singlet state. This then should stop spreading the
misconception that Bell has proven that quantum theory
is incompatible with all “local hidden-variable models”.
Of course, “local hidden-variable models” that do not
include the, for the laboratory experiment essential,
mechanism to identify single or pairs of photons are inca-
pable to describe the salient features of the experimental
data but as explained in section 7, that is hardly more
than a platitude.

In summary, in this appendix we have shown how to
construct probabilistic descriptions of computer simula-
tionmodels of EPRB experiments that rely on photon iden-
ti�cation thresholds to decide whether or not a photon
has been detected [34]. The resulting probabilistic mod-
els conform to the requirements of genuine “local hidden-
variable models” and if they account for a local mecha-
nism to identify photons, are also capable of producing re-
sults that are in full agreement with quantum theory.
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